3.397 \(\int \frac {(c-c \sin (e+f x))^{7/2}}{(a+a \sin (e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=193 \[ \frac {6 c^4 \cos (e+f x) \log (\sin (e+f x)+1)}{a^2 f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {3 c^3 \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a^2 f \sqrt {a \sin (e+f x)+a}}+\frac {3 c^2 \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 a f (a \sin (e+f x)+a)^{3/2}}-\frac {c \cos (e+f x) (c-c \sin (e+f x))^{5/2}}{2 f (a \sin (e+f x)+a)^{5/2}} \]

[Out]

3/2*c^2*cos(f*x+e)*(c-c*sin(f*x+e))^(3/2)/a/f/(a+a*sin(f*x+e))^(3/2)-1/2*c*cos(f*x+e)*(c-c*sin(f*x+e))^(5/2)/f
/(a+a*sin(f*x+e))^(5/2)+6*c^4*cos(f*x+e)*ln(1+sin(f*x+e))/a^2/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)+
3*c^3*cos(f*x+e)*(c-c*sin(f*x+e))^(1/2)/a^2/f/(a+a*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 193, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2739, 2740, 2737, 2667, 31} \[ \frac {3 c^3 \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a^2 f \sqrt {a \sin (e+f x)+a}}+\frac {6 c^4 \cos (e+f x) \log (\sin (e+f x)+1)}{a^2 f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {3 c^2 \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 a f (a \sin (e+f x)+a)^{3/2}}-\frac {c \cos (e+f x) (c-c \sin (e+f x))^{5/2}}{2 f (a \sin (e+f x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(c - c*Sin[e + f*x])^(7/2)/(a + a*Sin[e + f*x])^(5/2),x]

[Out]

(6*c^4*Cos[e + f*x]*Log[1 + Sin[e + f*x]])/(a^2*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) + (3*c^3*
Cos[e + f*x]*Sqrt[c - c*Sin[e + f*x]])/(a^2*f*Sqrt[a + a*Sin[e + f*x]]) + (3*c^2*Cos[e + f*x]*(c - c*Sin[e + f
*x])^(3/2))/(2*a*f*(a + a*Sin[e + f*x])^(3/2)) - (c*Cos[e + f*x]*(c - c*Sin[e + f*x])^(5/2))/(2*f*(a + a*Sin[e
 + f*x])^(5/2))

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 2737

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(
a*c*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2739

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-2*b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)), x] - Dist[(b*(2*m - 1)
)/(d*(2*n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e
, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] && LtQ[n, -1] &&  !(ILtQ[m + n, 0] && G
tQ[2*m + n + 1, 0])

Rule 2740

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Sim
p[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n)/(f*(m + n)), x] + Dist[(a*(2*m - 1))/(m
 + n), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && E
qQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m])
 &&  !(ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])

Rubi steps

\begin {align*} \int \frac {(c-c \sin (e+f x))^{7/2}}{(a+a \sin (e+f x))^{5/2}} \, dx &=-\frac {c \cos (e+f x) (c-c \sin (e+f x))^{5/2}}{2 f (a+a \sin (e+f x))^{5/2}}-\frac {(3 c) \int \frac {(c-c \sin (e+f x))^{5/2}}{(a+a \sin (e+f x))^{3/2}} \, dx}{2 a}\\ &=\frac {3 c^2 \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 a f (a+a \sin (e+f x))^{3/2}}-\frac {c \cos (e+f x) (c-c \sin (e+f x))^{5/2}}{2 f (a+a \sin (e+f x))^{5/2}}+\frac {\left (3 c^2\right ) \int \frac {(c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx}{a^2}\\ &=\frac {3 c^3 \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a^2 f \sqrt {a+a \sin (e+f x)}}+\frac {3 c^2 \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 a f (a+a \sin (e+f x))^{3/2}}-\frac {c \cos (e+f x) (c-c \sin (e+f x))^{5/2}}{2 f (a+a \sin (e+f x))^{5/2}}+\frac {\left (6 c^3\right ) \int \frac {\sqrt {c-c \sin (e+f x)}}{\sqrt {a+a \sin (e+f x)}} \, dx}{a^2}\\ &=\frac {3 c^3 \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a^2 f \sqrt {a+a \sin (e+f x)}}+\frac {3 c^2 \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 a f (a+a \sin (e+f x))^{3/2}}-\frac {c \cos (e+f x) (c-c \sin (e+f x))^{5/2}}{2 f (a+a \sin (e+f x))^{5/2}}+\frac {\left (6 c^4 \cos (e+f x)\right ) \int \frac {\cos (e+f x)}{a+a \sin (e+f x)} \, dx}{a \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=\frac {3 c^3 \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a^2 f \sqrt {a+a \sin (e+f x)}}+\frac {3 c^2 \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 a f (a+a \sin (e+f x))^{3/2}}-\frac {c \cos (e+f x) (c-c \sin (e+f x))^{5/2}}{2 f (a+a \sin (e+f x))^{5/2}}+\frac {\left (6 c^4 \cos (e+f x)\right ) \operatorname {Subst}\left (\int \frac {1}{a+x} \, dx,x,a \sin (e+f x)\right )}{a^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=\frac {6 c^4 \cos (e+f x) \log (1+\sin (e+f x))}{a^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {3 c^3 \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a^2 f \sqrt {a+a \sin (e+f x)}}+\frac {3 c^2 \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 a f (a+a \sin (e+f x))^{3/2}}-\frac {c \cos (e+f x) (c-c \sin (e+f x))^{5/2}}{2 f (a+a \sin (e+f x))^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.00, size = 187, normalized size = 0.97 \[ \frac {c^3 \sqrt {c-c \sin (e+f x)} \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right ) \left (\sin (3 (e+f x))+\cos (2 (e+f x)) \left (4-24 \log \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right )\right )+72 \log \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right )+\sin (e+f x) \left (96 \log \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right )+41\right )+28\right )}{4 f (a (\sin (e+f x)+1))^{5/2} \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(c - c*Sin[e + f*x])^(7/2)/(a + a*Sin[e + f*x])^(5/2),x]

[Out]

(c^3*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*Sqrt[c - c*Sin[e + f*x]]*(28 + Cos[2*(e + f*x)]*(4 - 24*Log[Cos[(e
+ f*x)/2] + Sin[(e + f*x)/2]]) + 72*Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]] + (41 + 96*Log[Cos[(e + f*x)/2] +
 Sin[(e + f*x)/2]])*Sin[e + f*x] + Sin[3*(e + f*x)]))/(4*f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(a*(1 + Sin[e
 + f*x]))^(5/2))

________________________________________________________________________________________

fricas [F]  time = 1.50, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (3 \, c^{3} \cos \left (f x + e\right )^{2} - 4 \, c^{3} - {\left (c^{3} \cos \left (f x + e\right )^{2} - 4 \, c^{3}\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{3 \, a^{3} \cos \left (f x + e\right )^{2} - 4 \, a^{3} + {\left (a^{3} \cos \left (f x + e\right )^{2} - 4 \, a^{3}\right )} \sin \left (f x + e\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))^(7/2)/(a+a*sin(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

integral((3*c^3*cos(f*x + e)^2 - 4*c^3 - (c^3*cos(f*x + e)^2 - 4*c^3)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*s
qrt(-c*sin(f*x + e) + c)/(3*a^3*cos(f*x + e)^2 - 4*a^3 + (a^3*cos(f*x + e)^2 - 4*a^3)*sin(f*x + e)), x)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))^(7/2)/(a+a*sin(f*x+e))^(5/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.31, size = 633, normalized size = 3.28 \[ -\frac {\left (\sin \left (f x +e \right ) \left (\cos ^{3}\left (f x +e \right )\right )+12 \sin \left (f x +e \right ) \left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-6 \sin \left (f x +e \right ) \left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )+\cos ^{4}\left (f x +e \right )-12 \left (\cos ^{3}\left (f x +e \right )\right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+6 \left (\cos ^{3}\left (f x +e \right )\right ) \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )-11 \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )+24 \sin \left (f x +e \right ) \cos \left (f x +e \right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-12 \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right ) \sin \left (f x +e \right ) \cos \left (f x +e \right )+10 \left (\cos ^{3}\left (f x +e \right )\right )+36 \left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-18 \left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )-6 \sin \left (f x +e \right ) \cos \left (f x +e \right )-48 \sin \left (f x +e \right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+24 \sin \left (f x +e \right ) \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )-17 \left (\cos ^{2}\left (f x +e \right )\right )+24 \cos \left (f x +e \right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-12 \cos \left (f x +e \right ) \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )+16 \sin \left (f x +e \right )-10 \cos \left (f x +e \right )-48 \ln \left (-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+24 \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )+16\right ) \left (-c \left (\sin \left (f x +e \right )-1\right )\right )^{\frac {7}{2}}}{f \left (\sin \left (f x +e \right ) \left (\cos ^{3}\left (f x +e \right )\right )-\left (\cos ^{4}\left (f x +e \right )\right )-4 \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-3 \left (\cos ^{3}\left (f x +e \right )\right )-4 \sin \left (f x +e \right ) \cos \left (f x +e \right )+8 \left (\cos ^{2}\left (f x +e \right )\right )+8 \sin \left (f x +e \right )+4 \cos \left (f x +e \right )-8\right ) \left (a \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {5}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c*sin(f*x+e))^(7/2)/(a+a*sin(f*x+e))^(5/2),x)

[Out]

-1/f*(sin(f*x+e)*cos(f*x+e)^3+12*sin(f*x+e)*cos(f*x+e)^2*ln(-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))-6*sin(f*x+
e)*cos(f*x+e)^2*ln(2/(cos(f*x+e)+1))+cos(f*x+e)^4-12*cos(f*x+e)^3*ln(-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))+6
*cos(f*x+e)^3*ln(2/(cos(f*x+e)+1))-11*cos(f*x+e)^2*sin(f*x+e)+24*sin(f*x+e)*cos(f*x+e)*ln(-(-1+cos(f*x+e)-sin(
f*x+e))/sin(f*x+e))-12*ln(2/(cos(f*x+e)+1))*sin(f*x+e)*cos(f*x+e)+10*cos(f*x+e)^3+36*cos(f*x+e)^2*ln(-(-1+cos(
f*x+e)-sin(f*x+e))/sin(f*x+e))-18*cos(f*x+e)^2*ln(2/(cos(f*x+e)+1))-6*sin(f*x+e)*cos(f*x+e)-48*sin(f*x+e)*ln(-
(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))+24*sin(f*x+e)*ln(2/(cos(f*x+e)+1))-17*cos(f*x+e)^2+24*cos(f*x+e)*ln(-(-
1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))-12*cos(f*x+e)*ln(2/(cos(f*x+e)+1))+16*sin(f*x+e)-10*cos(f*x+e)-48*ln(-(-1
+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))+24*ln(2/(cos(f*x+e)+1))+16)*(-c*(sin(f*x+e)-1))^(7/2)/(sin(f*x+e)*cos(f*x+
e)^3-cos(f*x+e)^4-4*cos(f*x+e)^2*sin(f*x+e)-3*cos(f*x+e)^3-4*sin(f*x+e)*cos(f*x+e)+8*cos(f*x+e)^2+8*sin(f*x+e)
+4*cos(f*x+e)-8)/(a*(1+sin(f*x+e)))^(5/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {7}{2}}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))^(7/2)/(a+a*sin(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate((-c*sin(f*x + e) + c)^(7/2)/(a*sin(f*x + e) + a)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{7/2}}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - c*sin(e + f*x))^(7/2)/(a + a*sin(e + f*x))^(5/2),x)

[Out]

int((c - c*sin(e + f*x))^(7/2)/(a + a*sin(e + f*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sin(f*x+e))**(7/2)/(a+a*sin(f*x+e))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________